Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery
نویسندگان
چکیده
This study investigated whether high-resolution satellite imagery is suitable for preparing a detailed digital forest cover map that discriminates forest cover at the tree species level. First, we tried to find an optimal process for segmenting the high-resolution images using a region-growing method with the scale, color and shape factors in Definiens(®) Professional 5.0. The image was classified by a traditional, pixel-based, maximum likelihood classification approach using the spectral information of the pixels. The pixels in each segment were reclassified using a segment-based classification (SBC) with a majority rule. Segmentation with strongly weighted color was less sensitive to the scale parameter and led to optimal forest cover segmentation and classification. The pixel-based classification (PBC) suffered from the "salt-and-pepper effect" and performed poorly in the classification of forest cover types, whereas the SBC helped to attenuate the effect and notably improved the classification accuracy. As a whole, SBC proved to be more suitable for classifying and delineating forest cover using high-resolution satellite images.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملAssessing Tree Cover in Agricultural Landscapes Using High-Resolution Aerial Imagery
Trees used in agroforestry practices, such as windbreaks, provide a variety of ecosystem benefits and are recognized globally as an important land use. However, efforts to inventory and monitor agroforestry land use have been sporadic, short-lived, or focused on small spatial extents. There are a variety of satellite-derived datasets that provide information about tree cover over broad spatial ...
متن کاملThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7 APPLICATION OF OBJECT BASED IMAGE ANALYSIS FOR FOREST COVER ASSESSMENT OF MOIST TEMPERATE HIMALAYAN FOREST IN PAKISTAN
The study aims at developing forest cover inventory from high resolution satellite imagery (0.6m) of Ayubia National Park, NWFP, Pakistan. The 3372 ha study area is one of the best examples of existing moist temperate Himalayan forest in Pakistan. Landscapes composed of large number of heterogeneous and complex elements, exhibit multi-scale hierarchical dependencies. A multi-scale object based ...
متن کامل